Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Antiviral Res ; 214: 105605, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2293609

RESUMEN

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Asunto(s)
COVID-19 , Neumonía , Humanos , Animales , Cricetinae , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Enzima Convertidora de Angiotensina 2 , Tomografía de Emisión de Positrones , Mesocricetus , Progresión de la Enfermedad
2.
Antiviral Res ; 213: 105589, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2255500

RESUMEN

The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Mesocricetus , Pandemias , Anticuerpos Monoclonales/uso terapéutico , Modelos Animales de Enfermedad , ARN Viral
3.
Science ; 377(6607): 728-735, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1968212

RESUMEN

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19 , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Epítopos/química , Epítopos/inmunología , Humanos , Péptidos/inmunología , Conformación Proteica en Hélice alfa , Dominios Proteicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA